## Assignment 8

Coverage: 16.1, 16.2 in Text.
Exercises: 16.1 no $10,12,15,21,22,25,27,30,32.16 .2$ no $11,15,21,25,27,29,30,32,35$.
Hand in 16.1 no $15,25,16.2$ no $21,29,35$ by November 9.

## Supplementary Problems

1. Let $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ be on $[a, b]$ and $[\alpha, \beta]$ respectively that describe the same curve $C$. It has been shown that there exists some $\varphi$ maps $[a, b]$ one-to-one onto $[\alpha, \beta], \varphi^{\prime}(t)>0$, such that $\mathbf{r}_{2}(\varphi(t))=\mathbf{r}_{1}(t)$ when both parametrization runs in the same direction. When they runs in different direction, $\varphi^{\prime}(t)<0$. Using this fact to prove that in both cases,

$$
\int_{a}^{b} f\left(\mathbf{r}_{1}(t)\right)\left|\mathbf{r}_{1}^{\prime}(t)\right| d t=\int_{\alpha}^{\beta} f\left(\mathbf{r}_{2}(z)\right)\left|\mathbf{r}_{2}^{\prime}(z)\right| d z
$$

In other words, the line integral

$$
\int_{C} f d s
$$

is independent of the choice of parametrization with the same or opposite direction.

